(4y^(2)+8y-7)/(2y+2)=y

Simple and best practice solution for (4y^(2)+8y-7)/(2y+2)=y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4y^(2)+8y-7)/(2y+2)=y equation:



(4y^(2)+8y-7)/(2y+2)=y
We move all terms to the left:
(4y^(2)+8y-7)/(2y+2)-(y)=0
Domain of the equation: (2y+2)!=0
We move all terms containing y to the left, all other terms to the right
2y!=-2
y!=-2/2
y!=-1
y∈R
We add all the numbers together, and all the variables
-1y+(4y^2+8y-7)/(2y+2)=0
We multiply all the terms by the denominator
-1y*(2y+2)+(4y^2+8y-7)=0
We multiply parentheses
-2y^2-2y+(4y^2+8y-7)=0
We get rid of parentheses
-2y^2+4y^2-2y+8y-7=0
We add all the numbers together, and all the variables
2y^2+6y-7=0
a = 2; b = 6; c = -7;
Δ = b2-4ac
Δ = 62-4·2·(-7)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{23}}{2*2}=\frac{-6-2\sqrt{23}}{4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{23}}{2*2}=\frac{-6+2\sqrt{23}}{4} $

See similar equations:

| 63=10w-w | | -(x+4)+2(-3x-4)=5x-4 | | x/8+6=6-5x/8 | | 2t-1=-10-1 | | -77+77=11b | | 9n=53 | | 4(b–68)=100 | | -4m-16=-4(1=2m)+8 | | 3y+5(2-y)=2y-10 | | 2x3+2x2−12x=0 | | x+1/7=6x/7-1 | | -3m+8=3 | | u/3-17=4 | | 90=3(b+21) | | -(n-6)-8=-(1+n | | 22r-4=5(7-2r) | | 62=6w–16 | | -3(8-5x)+6x=20x+17 | | 11+7=g | | 154x-56=14(11x-4) | | |3x-7|-7=-6 | | 6x/3=-15+3 | | 98=7(g+1) | | c+26/8=9 | | x+3/5=x/5 | | 12n+2=26 | | 4(n+18)=96 | | 4(p+13)+14=-6 | | 5x+8=11-7x+12x | | 8(m+5)=96 | | 13-12n=-7 | | n-19=-19 |

Equations solver categories